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Abstract

A diffusion regulation parameter, which operates based on the jump in the Mach number, is presented for implemen-
tation in Euler solvers. This diffusion regulation parameter adjusts itself automatically in different regimes of the flow and
leads to the exact capturing of steady contact discontinuities which are aligned with the grid-lines. This diffusion regulator
parameter reduces numerical dissipation, is very simple and can be easily incorporated in any Euler solver. By coupling
such a parameter with a simple numerical method like the Local Lax-Friedrichs (Rusanov) method, an accurate and
yet simple numerical method is developed for the numerical simulation of inviscid compressible fluid flows. To demon-
strate the applicability of this approach to any Euler solver, the diffusion regulation parameter is also applied in the frame-
work of a Kinetic Scheme which is very diffusive and the improvements in the accuracy for both the methods are
demonstrated through several bench-mark test problems.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The motivation for this work is to develop a numerical method for solving Euler equations, capturing dis-
continuities accurately without oscillations and with algorithmic simplicity. Of the upwind Euler solvers devel-
oped in the last few decades, the approximate Riemann solvers of Roe [1] and Osher and Solomon [2], the
advective upstream splitting method (AUSM) and its several variants of Liou [3–5] and the convective upwind
split pressure (CUSP) scheme of Jameson [6,7] are the most popular methods which can capture discontinu-
ities with very good accuracy. Apart from these popular methods, the flux vector splitting methods of Steger
and Warming [8] and van Leer [9], the Kinetic Schemes [10] and Relaxation Schemes [11] also provide inter-
esting alternatives for solving compressible fluid flow equations. However, these later numerical methods are
known to be overly diffusive in capturing discontinuities. Recently, there have been attempts to reduce the
amount of numerical diffusion in Relaxation Schemes [12] and Kinetic Schemes [13–15]. Here, we present a
new and simple approach to capture discontinuities accurately and demonstrate it with a simple Euler solver,
the Local Lax-Friedrichs (Rusanov) method [16,17] and also with a Kinetic Scheme, the peculiar velocity
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based upwind (PVU) method [18–21]. The coupling of the diffusion regulation parameter makes these other-
wise diffusive schemes very accurate and leads to exact capturing of steady contact discontinuities when the
discontinuities are aligned with the grid lines. Our approach of diffusion regulation is applicable to any Euler
solver. We demonstrate its usefulness by applying it also to Roe’s method and Osher’s scheme and even these
less diffusive schemes give improved results when coupled with the diffusion regulation parameter for multi-
dimensional flows. Several bench-mark problems are solved with this approach and the results demonstrate
the efficiency of this approach.
2. Diffusion regulator (DR) model

Consider one-dimensional system of conservation laws for inviscid fluid flow
oU
ot
þ oG

ox
¼ 0 ð1Þ
where U = (q, qu, qE)T is the vector of conserved variables and G = (qu, qu2 + p, quE + pu)T is the inviscid
flux vector. An explicit scheme in conservation form on a three point stencil and with piecewise constant
approximation for conserved variable is given by
U nþ1
j ¼ Un

j �
Dt
Dx
ðGjþ1

2
� Gj�1

2
Þ ð2Þ
where Dt and Dx are respectively time and space steps, j represents the cell centroid and j� 1
2

represent the cell
interfaces. In the finite-volume formulation (2), the differences among all the numerical schemes lie essentially
in the definition of numerical flux GI ¼ G

jþ1
2

evaluated at the cell interface. The upwind flux splitting schemes

define the interface flux in terms of split fluxes of left and right states as
GI ¼ GþL þ G�R ð3Þ

The interface flux in any scheme can be written in the form
GI ¼
1

2
ðGL þ GRÞ � DI ð4Þ
where L and R represent the left and right states, the first term on the right hand side (average flux) represents
the central discretization of the flux terms and DI represents the flux corresponding to numerical diffusion. The
basic idea of our diffusion regulator (DR) model [22,23] is to regulate the dissipative flux DI using a parameter
U (DR parameter) so that optimal amount of dissipation will be added in the different flow regimes, for cap-
turing discontinuities accurately without oscillations and to avoid unphysical expansion shocks. The param-
eter U is introduced to multiply the diffusive flux in the definition of the interface flux, as given below.
GI ¼
1

2
ðGL þ GRÞ � UDI ð5Þ
Note that the above format of the interface flux being a sum of an average flux (which leads to central discret-
ization) and a dissipative flux is similar to the format used in the JST scheme [24], as a central discretization
based scheme stabilized with an artificial dissipation term which is adapted to the local properties of flow. JST
scheme, known for its efficiency, uses higher order Runge–Kutta time stepping and has a dissipation term
which is a blend of second and fourth differences along with pressure gradient based shock sensor. Here,
we regulate the dissipation term in a different manner, as described in the following section.

2.1. Diffusion regulator (DR) parameter

The solution of hyperbolic conservation laws in a stable manner requires sufficient artificial viscosity, either
as a direct addition to the averaged flux (which leads to central discretization) or as the implicitly present dif-
fusive flux in an upwind based formulation. There are at least three requirements which the numerical viscosity
should satisfy, for good shock capturing. Firstly, in most of the accurate schemes, including the methods of
Roe or Osher, the dissipation flux DI is of the form aDU and assumes small values away from shock
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discontinuities as DU is negligible. Therefore, a minimal dissipation for a stable solution is sufficient in such
flow regimes. Secondly, near to a shock but not at the shock discontinuity itself, the dissipation must be
sufficient enough and do the job of diminishing the influence of left state on right state and vice versa, for
a greater accuracy. But, most schemes for vector conservation laws do not completely eliminate the above
influence and hence shock is always smeared due to the contribution from both sides of the shock. Thirdly,
the numerical dissipation at the discontinuities should be zero to have an exact capture. The diffusion regu-
lator parameter described here is modeled to adopt the first two roles to a greater extent, thereby leading
to a low dissipative and yet robust scheme. In addition, the numerical dissipation is also driven to zero at
a steady contact discontinuity, with use of an exponential function of an average Mach number at the cell
interfaces, leading to exact capturing of the steady contact discontinuities.

We use a simple expression for the diffusion regulator parameter ‘U’ as a function of jump in the magnitude
of Mach number across the interface. The maximum value of ‘U’ is restricted to unity so that maximum value
of the numerical dissipation corresponds to the numerical dissipation present in the original scheme chosen for
diffusion regulation. In an upwind scheme, U = 1 corresponds to the full upwind flux. The discrete approxi-
mation to spatial derivative takes values ranging from a central difference approximation (discounting the
residual dissipation) to a full dissipative approximation allowed by the original scheme chosen, for example,
an upwind scheme. The diffusion regulator parameter is expressed mathematically as (Ma is the arithmetic
mean of left and right Mach numbers)
U ¼ ðDM2 þ d2Þ
2d

ð1� e�jMaÞ when jDM j 6 d ð6Þ

U ¼ jDM j when d < jDM j 6 1:0 ð7Þ
U ¼ 1:0 when jDM j > 1:0 ð8Þ
DM ¼ ML �MR ð9Þ
The diffusion regulation parameter without the exponential term is sketched in Fig. 1. The role of the expo-
nential term, which is a function of the average Mach number, is to drive the numerical diffusion to zero when
Mach numbers become small so that steady contact discontinuities are captured accurately. The parameter j
ensures a steep and still smooth variation of U in the very low Mach number region. To have the steep expo-
nential variation, a high value of j is needed as the Mach number is reduced. Empirically, for all the super-
sonic test cases, j = 10 is found to work very well and for subsonic cases, higher value of j is needed as Mach
number keeps decreasing. Numerical dissipation in the vicinity of a shock wave is sufficiently high and takes its
maximum value (U = 1) for capturing strong shocks. The dissipative flux varies smoothly when moving from
smooth solution to discontinuities. A minimum residual dissipation is retained, except when the average Mach
number is close to zero, to avoid expansion shocks and to prevent the violation of the entropy condition. The
DR parameter is modeled as a function of |DM| and takes values from d/2 to 1.0 as follows.
δ

δ
–1.0 0 1.0

1.0

ΔΜ

Φ 

Fig. 1. Diffusion regulator parameter without the exponential term.
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� Case (1) – At steady contact surfaces. Magnitude of both ML and MR will be close to zero. Ma, which is a
arithmetic mean of left and right Mach numbers, is zero and hence U = 0.0.
� Case (2) – At shocks. ML and MR will be of the same sign. |DM| will vary based on whether shock is weak or

strong. For relatively weak shocks when |DM| 6 d, U varies between d/2 and d. For stronger shocks, as
|DM| P d, U varies from d to 1.0.
� Case (3) – In smooth regions. Generally, |DM| 6 d, 0.0 6 U 6 d. The value of d is taken as 0.5 and is found

to work in all the test cases presented in this study, for both internal and external flows.

The diffusion regulator parameter of the model takes a low value far away from a shock discontinuity but
picks up gradually in the shock proximity. This helps in decreasing the influence of the right state (of the
shock) on the left state and vice versa, thus leading to a crisper shock. Since the dissipation is non-zero near
the shock, the segregation of the information from left and right sides of a shock wave is not completely
achieved, but gets optimized and the points which retain influence from both the sides become few in number.
The final effect is that a better solution emerges than the parent scheme. In the smooth regions, including the
expansion zones, sufficient artificial viscosity as a function of DM(6d) is maintained. At stagnation sonic
points U becomes zero and hence grid aligned contact discontinuities are captured exactly. This algorithm
is implemented on one of the simplest algorithms, the Local Lax-Fredrichs (Rusanov) method, to obtain a
low dissipative scheme and is presented in the following section.

3. Local Lax-Friedrichs (Rusanov) method with diffusion regulation

A low dissipative and yet simple numerical method, the Diffusion Regulated Local Lax-Friedrichs (DR-
LLF) scheme, is presented here. The dissipation term in Rusanov’s scheme, also known as Local Lax-Fred-
richs method [16,17], is written as a function of local maxima of the eigenvalues of the flux Jacobian matrix
and the state variable difference as
DI ¼
1

2
jkjmaxðU R � U LÞ ð10Þ
Thus, the interface flux in LLF method is expressed as
GI ¼
1

2
ðGL þ GR � jkjmaxðUR � U LÞÞ ð11Þ
We modify the diffusive flux by multiplying it with the diffusion regulation parameter and obtain the interface
flux as
GI ¼
1

2
ðGL þ GR � UjkjmaxðU R � ULÞÞ ð12Þ
The results of the standard 1D shock tube test case [25] (for the steady contact discontinuity and Sod test
cases) are presented in Fig. 2 and for the quasi-1D nozzle flow test case [26] in Fig. 3. It can be observed that
there is a substantial improvement in the resolution of shocks in addition to exact resolution of the steady
contact discontinuity. The shocks with DR-LLF scheme are captured with fewer number of points than with
the LLF scheme.

3.1. Higher order extension

The concept of uniformly accurate, arbitrarily high order, essentially non-oscillatory (UNO) type upwind
interpolation of Chakravarthy et al. [27] is adopted with the LLF method to obtain a higher order accurate
scheme. A form of linear reconstruction of split fluxes is used to obtain the interface flux and hence will be
influenced by four points (two each on left and right sides of the interface). Thus, the flux at the right interface
on an equally spaced five point stencil is written as
Gjþ1
2
¼ Gþj þ

Dx
2Dx
ðGþj � Gþj�1Þ þ G�jþ1 þ

Dx
2Dx
ðG�jþ1 � G�jþ2Þ ð13Þ
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Fig. 2. Comparison of DR-LLF and LLF methods: (a) 1D steady contact discontinuity in a shock tube; and (b) 1D Sod’s shock tube
results on 100 grid points.
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Fig. 3. Comparison of DR-LLF and LLF methods for quasi-1D Flow through a converging–diverging nozzle with 100 points: (a) first
order and (b) second order solutions.
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The split fluxes are calculated by rewriting first order scheme (Eq. (12)) as
Gjþ1
2
¼ 1

2
ðGj þ Gjþ1 � UjkjmaxðUjþ1 � U jÞÞ ¼ Gþj þ G�jþ1 ð14Þ
and hence
Gþj ¼
1

2
ðGj þ UjkjmaxU jÞ and G�jþ1 ¼

1

2
ðGjþ1 � UjkjmaxU jþ1Þ ð15Þ
DR parameter ‘U’ is computed using the stencil maxima of the jump in Mach number (which is the difference
of the minimum and maximum Mach numbers in the stencil). In order to suppress the wiggles which will ap-
pear in higher order schemes, the split fluxes in Eq. (13) are modified by a minmod limiter ‘g’ [23] as
Gjþ1
2
¼ Gþj þ

Dx
2Dx

g½ðGþj � Gþj�1Þ; aðGþjþ1 � Gþj Þ� þ G�jþ1 þ
Dx

2Dx
g½ðG�jþ1 � G�jþ2Þ; aðG�j � G�jþ1Þ� ð16Þ

gða; bÞ ¼
a if jaj < jbj

b if jbj < jaj

(
ð17Þ
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3.2. Results and discussions

The proposed low dissipative scheme is tested on the following standard 2D bench-mark problems: (i) grid-
aligned shear flow [28]; (ii) shock reflection problem [29]; (iii) supersonic flow over a compression ramp of 15�
in a channel [30]; (iv) supersonic flow over a step in wind tunnel [31]; (v) supersonic [32], transonic [32] and
subsonic [33] flows over NACA0012 airfoil; and (vi) hypersonic flow over a semi-cylinder [34,35]. The diffusion
regulator parameter for multi-dimensional problems is computed based on the normal Mach numbers across
the finite volume interface.

The results obtained with first order accurate and second order accurate DR-LLF method are compared
with those obtained with first order accurate and second order accurate LLF Scheme in Figs. 4–9. While
the first order accurate LLF method is highly diffusive, the first order accurate DR-LLF method captures
the shocks with much less numerical dissipation and is uniformly more accurate. In comparison, the second
order accurate LLF method captures the shock solutions more accurately than the first order accurate LLF
method, but in some cases the solutions are still found to be more dissipative than the first order DR-LLF
scheme. Whenever a contact discontinuity (or shear layer) is aligned with the grid, DR-LLF scheme captures
it exactly, without any numerical dissipation (Fig. 4). The accurate capturing of slip surfaces, bow shock,
Mach stem and expansion corner for the step-in-a-wind-tunnel problem (Fig. 9) demonstrates the higher accu-
racy of the DR-LLF method, compared to the LLF method. With the original LLF method, the slip surface at
the downstream is not at all seen and the position of the beginning of the Lambda-shock is not right above the
beginning of the step. These drawbacks are corrected by the diffusion regulation parameter in the DR-LLF
scheme. The zero normal velocity across a steady contact discontinuity results in a zero normal mean Mach
number and hence the numerical dissipation is completely turned off. Thus, the grid-aligned contact discon-
tinuities are captured exactly. However, if the contact discontinuity is not aligned to the finite volume inter-
face, then the non-zero normal mean Mach number can result in dissipative solutions of contact
discontinuities, depending on their deviation from grid lines. This problem is basically due to the limitation
of the finite volume method as only the fluxes normal to the cell-interfaces are considered. This problem
can be cured only by genuinely multi-dimensional models, which is beyond the scope of the present work.
However, the numerical dissipation in capturing discontinuities in multi-dimensional cases is still expected
to be low with a diffusion regulated scheme compared to a scheme without such diffusion regulation.

Solutions obtained for external supersonic, transonic and subsonic flows over NACA0012 airfoil presented
in Figs. 10 and 11 corroborate the efficacy of the new diffusion regulation model in capturing discontinuities
with high accuracy. The modified scheme brings the bow shock and fish tail shocks in supersonic flow into
prominence which are hardly seen in the LLF solution. Pressure contours for transonic flow case show the
neatly resolved body shocks which are unseen in the LLF solution. The solution for external hypersonic flow
(Fig. 12) around a semi-cylinder presented for Mach number 6.0 [3] shows a dissipation reduction with DR-
LLF method. The result obtained for a tangentially stretched grid for a high free stream Mach number of 20.0
(typical test for carbuncle phenomenon [34,35]) is carbuncle free with the low dissipative scheme. Fig. 13
shows the higher values assumed by diffusion regulator parameter closer to the shock and a minimum value
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Fig. 4. Comparison of first order DR-LLF and LLF schemes: Mach number contours (2.0:0.1:3.0) for grid aligned shear flow with 40 · 40
grid; regulator parameter (A) without exponential term (B) with exponential term.
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–1 –0.5 0 0.5 1 1.5 2
0

0.5

1
LLF(0.9:0.05:2.9)

(a)

–1 –0.5 0 0.5 1 1.5 2
0

0.5

1
(b)

–1 –0.5 0 0.5 1 1.5 2
0

0.5

1
(c)

–1 –0.5 0 0.5 1 1.5 2
0

0.5

1
DR–LLF(0.9:0.05:2.9)

(a)

–1 –0.5 0 0.5 1 1.5 2
0

0.5

1
(b)

–1 –0.5 0 0.5 1 1.5 2
0

0.5

1
(c)

Fig. 5. Comparison of first order DR-LLF and LLF schemes: pressure contours (0.7:0.1:2.9) for oblique shock reflection with grids: (a)
60 · 20; (b) 120 · 40; and (c) 240 · 80.
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‘d’ near to the solid body. The local dissipation correction (see section on diffusion regulator parameter) in the
small zone upstream to the shock, which is explained as a cure for the carbuncle phenomenon [34,36], may be
naturally available with this regulator although this understanding needs a detailed study. The convergence
rate for the new scheme is found comparable to that of the LLF scheme (Figs. 14 and 15) up to medium sized
meshes but slows down for very fine mesh. Thus, the DR model allows numerical viscosity to be computed
according to flow conditions and its minimal value of as low as a quarter of the upwind dissipation is sufficient
to maintain a workable scheme.
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the parent scheme are available in [18–21]. The Kinetic Schemes, like the flux vector splitting methods, are
known to be robust but overly diffusive, compared to the Riemann solver of Roe. Our motivation here is to
introduce low dissipation in the above mentioned Kinetic Scheme, using the diffusion regulation parameter.
It is convenient to use the modified courant splitting of Dominic et al. [15] for upwinding of the peculiar
velocity c = v � u, where v and u are the molecular and macroscopic fluid velocities, respectively. The
new method can also be formulated in a different way directly by modifying the diffusion added to central
discretization part of the interface fluxes. Since the introduction of peculiar velocity leads to the separation
of the convective (transport) and pressure (acoustic) fluxes, each of these can be considered for upwinding
separately, as shown below.
(a)(b)(c)
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4.1. Upwinding of the u-part

The splitting for upwinding the transport flux
oGt

ot
¼ o

ox
hWuþF i þ o

ox
hWu�F i ð18Þ
is reformulated as
uþ ¼ uþ /tjuj
2

and u� ¼ u� /tjuj
2

ð19Þ
instead of
uþ ¼ uþ juj
2

and u� ¼ u� juj
2

ð20Þ
Thus
oGt

ox
¼ oGtþ

ox
þ oGt�

ox
ð21Þ
where
Gt� ¼ u�U ð22Þ
4.2. Upwinding of the c-part

The splitting of the peculiar velocity (c) in the acoustic flux term
oGa

ot
¼ o

ox
hWcþF i þ o

ox
hWc�F i ð23Þ
is reformulated as where
cþ ¼ cþ /ajcj
2

and c� ¼ c� /ajcj
2

ð24Þ
Thus
oGa

ox
¼ oGaþ

ox
þ oGa�

ox
ð25Þ
where
Ga� ¼ hWc�F i ð26Þ

hWcþF i ¼ hW c
2

F i þ /ahW
jcj
2

F i ð27Þ

hW c
2

F i ¼
Z 1

0

dI
Z 1

�1
dcW

cF
2

ð28Þ

hW jcj
2

F i ¼
Z 1

0

dI
Z 1

0

dcW
cF
2

ð29Þ
Therefore, the expression for split transport and acoustic fluxes becomes
Gt� ¼ u�U ; Ga� ¼

� /aq
2
ffiffiffiffiffiffi
pb
p

p
2�

/aqu
2
ffiffiffiffiffiffi
pb
p

pu
2
� /aq

2
ffiffiffiffiffiffi
pb
p p

2qþ E
n o

2
6666664

3
7777775

ð30Þ
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dissipation in capturing the shocks and capturing steady contact discontinuities aligned with the grid lines ex-
actly, while still maintaining the features of a robust scheme.

5. Diffusion regulation with other schemes and on unstructured meshes; demonstration with Roe and Osher

schemes

With the reduction of numerical dissipation in Local Lax-Friedrichs scheme and a Kinetic Scheme, which
are known to be less accurate than the approximate Riemann solvers of Roe and Osher, a natural question
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would be how this new diffusion regulation method works with these later and more accurate methods. In one
dimension, Roe’s approximate Riemann solver is designed to capture the steady discontinuities exactly and
hence no further reduction in numerical dissipation is possible. However, in multi-dimensional cases, even
“rst order DR-PVU and PVU schemes: density contours (2.0:082:580) for hypersonic ”ow across a semi-cylinder:(a) for Mach 680 with grid 45·45; and (b) for Mach 2080 with tangentially stretched grid 320·208S. Jaisankar, S.V. Raghurama Rao / Journal of Computational Physics 221 (2007) 577…599593



−0.5 0 0.5 1 1.5

0.2

0.4

0.6

0.8

ROE(1.0:0.1:3.8) GRID=60x20

−0.5 0 0.5 1 1.5

0.2

0.4

0.6

0.8

DR–ROE(1.0:0.1:3.8) GRID=60x20

−1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5
ROE(2.0:0.2:5.0)

−1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5
DR–ROE(2.0:0.2:5.0)

Fig. 27. Results with first order DR-Roe and Roe’s methods: pressure contours for supersonic flow over ramp on 60 · 20 grid (top) and
hypersonic flow at Mach number 6.0 across a semi-cylinder on 45 · 43 grid (bottom).

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1  1.5  2

 0

0.2

0.4

0.6

0.8

 1

-1 -0.5  0  0.5  1  1.5  2

DR-PVU

 0

0.2

0.4

0.6

0.8

 1

-1 -0.5  0  0.5  1  1.5  2

PVU

 0

0.2

0.4

0.6

0.8

 1

-1 -0.5  0  0.5  1  1.5  2

PVU

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1  1.5  2

DR-OSHER

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1  1.5  2

OSHER

 0 0 . 2 0 . 4 0 . 6 0 . 8 1- 1- 0 . 5 0  0 . 5 1 1 . 5 2 O S H E RF i g . 2 8 . S u p e r s o n i c ” o w w i t h M a c h n u m b e r 2 a c r o s s r a m p i n c h a n n e l , p r e s s u r e c o n t o u r s w i t h D R - P V U , D R - O S H E R ( “ r s t o r d e r ) c o m p a r e d t o r e s p e c t i v e u p w i n d s c h e m e s o n u n s t r u c t u r e d m e s h ( t r i a n g u l a r c e l l s : 1 2 8 6 a n d e d g e s : 2 4 1 3 ) . 5 9 4 S . J a i s a n k a r , S . V . R a g h u r a m a R a o / J o u r n a l o f C o m p u t a t i o n a l P h y s i c s 2 2 1 ( 2 0 0 7 ) 5 7 7 … 5 9 9



Fig. 29. Hypersonic ”ow with Mach number 6 across semi-cylinder, pressure contours of di�usion regulated upwind schemes (“rst order)compared to respective upwind schemes on unstructured mesh (triangular cells: 3987 and edges: 7481).S. Jaisankar, S.V. Raghurama Rao / Journal of Computational Physics 221 (2007) 577…599595
Roe scheme cannot capture the discontinuities oblique to the grid lines exactly using a finite volume method.
This is due to the inherent dimensional splitting present in the finite volume method. When the diffusion reg-
ulation parameter is introduced in Roe scheme for 2D cases, a further reduction in numerical dissipation is
seen (Fig. 27). Thus, the diffusion regulation parameter improves the results of even Roe’s approximate Rie-
mann solver in multi-dimensions.

Lastly, the diffusion regulation approach is also tried on unstructured meshes, with Osher’s approximate
Riemann solver [2] and the Kinetic Scheme, peculiar velocity based upwind (PVU) method. The reduction
in numerical dissipation is demonstrated also on unstructured meshes, with the above methods (Figs. 28
and 29). Mesh adaptation also works well with diffusion regulated methods, as can be seen in Figs. 30
and 31.

5.1. Working of diffusion regulator (DR) parameter

The diffusion regulator parameter is formulated to take peak values in the shock zone while taking a def-
inite positive value at all other flow regimes except at contact discontinuities. An insight into how the diffusion
regulator works during time marching computations is elaborated here (see Fig. 32a). Consider the finite vol-
ume method of solution to a Riemann problem and focus on a shock positioned between points J and J + 1 at
the end of Nth time level. Assume the shock to move by one grid spacing in the (N + 1)th time iteration and
reposition itself at cell interface between (J + 1, J + 2). Since U is designed to take the value of local maximum
at the shock, numerical diffusion will be a local maximum at the cell interface between points (J, J + 1) in the
(N + 1)th iteration. Thus, the diffusion regulator enforces higher numerical viscosity at the nearest interface to
the shock which is crucial to the stabilization of the scheme.
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Once the residual becomes considerably low, the shock position becomes steady. With further time march-
ing, the residual falls further and the shock becomes crisper (see Fig. 32b). Assume that the shock position
becomes steady at time level S at the cell interface between points (J + 2, J + 3). Then, further marching to
levels S + 1 and S + 2 results in further fall of residue and self-regulation of numerical diffusion around the
shock zone takes place as described below. DM at the entrance to the shock zone becomes lower compared
to previous time levels while the DM at the shock interface itself becomes higher. Thus, a two way process
of reduction in numerical diffusion at the entrance to shock zone along with an increase in dissipation at
the shock interface occurs. Since the maximum and minimum value of DR parameter is restricted to unity
and d respectively, this two way process stabilizes with shock being captured with fewer points.

The evolution of the DR parameter with number of iterations, while moving from unsteady to steady solu-
tion for quasi-1D flow through a nozzle, is given in Fig. 33. A constant value of parameter due to the residual
dissipative flux is maintained till the shock discontinuity appears. When a shock discontinuity evolves, the
parameter increases in the adjacent zones with its peak value at the shock. Once the position of shock starts
becoming steady, the neighborhood points to the shock are pulled to the smooth solution regime in the subse-
quent iterations (shock becomes sharper), due to the dissipation regulation mechanism. This can be seen in the
figure for iterations between 1750 and 2000. Ultimately, a steady solution sets in when the peak of DR param-
eter becomes steady (seen for iterations between 2000 and 4000) with fewer points across the shock than the
parent scheme. It can be seen from the numerical experiments that the gradual variation of the diffusion reg-
ulation parameter based on the jump in Mach number strongly aids in self adjustment of numerical dissipation
around the shock, ultimately resulting in a sharper shock solution. The model expressed as DM is found to be
highly effective in a gradual increase of dissipative flux in shock vicinity while a minimum non-zero dissipation
farther from shocks significantly contributes to stability of the scheme. Added to the mechanism described
above, the exponential term in the DR model helps in capturing the steady contact discontinuities exactly.

6. Conclusions

A diffusion regulation parameter is presented for Euler solvers. This parameter is based on jump in
the Mach number and adjusts itself automatically in different flow regimes. With this diffusion regulation
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parameter, any Euler solver can capture steady contact discontinuities aligned with the grid lines exactly and
this approach leads to low diffusion schemes. By coupling this parameter with one of the simplest of the
numerical methods, the Local Lax-Friedrichs (Rusanov) method, a very efficient Euler solver is developed.
The efficacy of this approach is also demonstrated with a diffusive Kinetic Scheme and this approach improves
multi-dimensional solutions of even the low diffusive methods like Roe and Osher schemes. Several bench-
mark problems are presented, demonstrating the exact capturing of steady contact discontinuities and reduc-
tion in numerical dissipation. This approach is currently being applied to viscous flows.
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